THE VISCOSITY OF VAPOURS OF ORGANIC COMPOUNDS. PART III.

By Toshizo TITANI.

Received June 26th, 1933. Published September 28th, 1933.

The determinations of the viscosity of vapours of organic compounds with the boiling points lower than ordinary room temperature were already made by the present author. The similar experiment has been further continued for the determination of the viscosity of the vapours of other organic compounds such for an example as benzene, ethyl alcohol, carbon tetrachloride and etc., which are in a liquid state at room temperature.

Experimental Procedure.

The measurements of viscosity were made by the traspiration method according to the principle devised by M. Trautz and W. Weizel, $^{(2)}$ which will be briefly explained by using the diagrammatical figure 1. Three glass bulbs A, B and C are connected to one another with glass tubes having a large bore, and measured quantities of mercury are placed in them, as is shown in the figure. The total bulb system is heated in a thermostat to a constant temperature T_0 . The lower bulb C is connected with a glass tubing to a preheating tube W and a glass capillary tube K, other end of

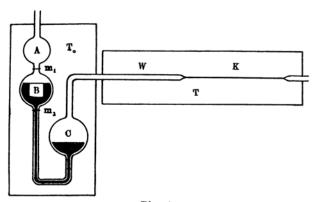


Fig. 1.

⁽¹⁾ T. Titani, this Bulletin, 4 (1929), 277; 5 (1930), 98.

⁽²⁾ M. Trautz & W. Weizel, Ann. Phys., (4) 78 (1925), 305.

which is opened to air, both W and K being placed in another thermostat T. The vapour of organic compound is drawn through the capillary K and the preheating tube W into a space in the bulb C partially filled with mercury, by drawing up the mercury high enough into the bulbs A and B.


The vapour in the bulb C is driven out, when it attains the same temperature as that of the thermostat T_0 , in the reverse direction into the air, by letting the mercury flow down from the upper bulbs A and B into the lower one C. The time t required for the mercury to travel a distance between m_1 and m_2 which are marked on the neck of the both ends of the bulb B is taken, while at the same time the temperature T of the capillary tube K, measured in the absolute scale, is recorded. Then the viscosity η of the vapour at the temperature T can be calculated by the formula⁽³⁾:

$$\eta = K \frac{t}{T}$$
 ,

where K is a constant for a given apparatus so long as the temperature T_0 of the bulb system remains constant.

The total apparatus is shown in Fig. 2. The whole system is made The two bulbs A and B are of spheroidal form and the bulb C is a sphere having the dimensions: A 25×40 mm., B 30×50 mm. and $C_{50} \times 50$ mm. respectively. The three bulbs are connected to one another by glass tubes 6 mm. bore, which are somewhat contracted at the points of two marks m₁ and m₂ and between the bulb B and C a small spheroidal bulb D having dimensions 15×30 mm. is inserted for the reasons which will be mentioned below. Exactly weighted quantities of mercury namely 1000 grams, are placed in the bulb system which is sealed into a large glass jacket, to be heated to a constant temperature T_0 by a toluene vapour produced in a large copper flask F. The vapour jacket supported on a strong wooden stative is covered with an asbestos plate having several windows for observation. The upper opening of the bulb A can be communicated either to a high pressure H or a suction L or it can also be opened to air M through the three stoppers X, Z or Y respectively. In a small bulb U above A are placed cotten wools in order to prevent dust particles from falling into the bulb system. The lower bulb C is jointed to a preheating tube W by sealing with a glass tube G 3 mm. bore, which is bent at three points as is shown in the figure for the purpose of buffering, and is heated electrically by winding it with a nichrom wire and by wrapping it with asbestos paper.

⁽³⁾ The derivation of this equation is referred to the original paper of M. Trautz and W. Weizel, loc. cit.

Both the preheating tube W 3 mm. inner diameter and 86 cm. long and the glass capillary tube K about 0.1 mm. inner diameter and 83 cm. long are bent in U-form at the points about one third the distance from the ends and sealed together at the ends of the shorter limbs. placed in an electrical resistance furnace, consisting of a brass pipe having a thick wall of 1 cm. and 1.5 cm. inner diameter and 68 cm. long. The outside of the pipe is wrapped with asbestos paper and then wounded with a set of nichrom wires, which are parallel to each other and which have one common terminal E₁ at one end and two separated terminals E_2 and E_3 at the other end, so that they may be communicated either in series or in parallel and also may be used quite separately by using the switch board S_1 . In the latter two cases the current can be regulated by the resistance R₁. The brass pipe is once more thickly covered with asbestos and is placed centrally in a large asbestos cylinder, the space between them being packed with asbestos wools. On the middle parts of both the outer asbestos cylinder and the inner brass tube are drilled holes to be used for inserting a thermometer T to measure the temperature of the furnace. The following device is made in order to minimize for the mercury column of the thermometer T not in direct contact with the chamber of the resistance furnace the temperature corrections which would be remarkably large at high temperatures. middle part of the column of the thermometer T is held another small thermometer t. These two thermometers are placed within a glass cylinder wrapped with asbestos paper over which a nichrom wire is wounded for heating purpose. Another glass cylinder of larger size wrapped with asbestos is placed over them. This whole system is heated electrically by means of nichrom wire wounded over the inner glass cylinder, the switch S_3 and the resistance R_3 , to a known temperature which is easily read by the second thermometer t held on to the middle part of the first larger one T as is mentioned just before. In these two respective asbestos covering the two glass cylinders are made windows: through which reading on the thermometers is made possible.

The end of the capillary tube K is sealed to a long glass tube V 3 mm. inner diameter, which is bent vertically downward to be connected to a vapourising device PQR with a ground joint J. The vertical tube V wrapped with asbestos has a doubly winding of nichrom wires so as to make electrical heating connection in series with that of the glass tube G by means of the switch S_2 and the resistance R_2 . The vapourising apparatus consists of this vertical tube V together with a bulb apparatus PQR, which is separately shown in the upper corner of the right hand

side of Fig. 2. The organic liquid the vapour of which is to be investigated is placed in the bulbs PQR, which are gently warmed either with a small Bunsen burner or with an incandescent lamp. The loss of the liquid placed in the bulbs PQR through evaporation must be prevented and the entry of dust particles into it has to be also made impossible. For this purpose, over the bulb Q is fitted a water condenser whose running water is also used to cool the bulb R.

The lower end of the vertical tube V is placed few millimeter below the surface of the organic liquid in the bulb P, so that the liquid may run up into the vertical tube V, when we connect the upper opening of the bulb A to the suction L by carefully opening the stopper Z. But, as the tube V is electrically heated, the liquid is vapourised as soon as it run up into the tube V, the organic vapour thus produced being drawn through both the capillary and the preheating tube and finally collected over the mercury in the bulb C. When sufficient quantities of vapour are collected in the bulb C, this mixture of air and the organic vapour is pushed back through the capillary tube into the bulb P, by the pressure brought about by letting the mercury flow down first from the bulbs A and B to C and then by the further pressure obtained by the opening of the stopper X to the high pressure bulb H, which process results in bringing down the level of the mercury finally into the small bulb D. organic vapour is then again drawn into the bulb C and when sufficient quantities of vapour get into it, they are pushed back by applying the pressure to the bulb C, as is mentioned above. With the repetition of this process number of times, the air in the whole system is gradually driven out by the organic vapour. As the total volume of the tube system is only one tenth as compared with the volume of the bulb C, the replacement of air with the organic vapour by means of this method is very easy. As a matter of fact, the time required for the mercury to pass a distance between the two marks m₁ and m₂ becomes practically constant only after repetition of such processes five times. The present author has repeated the process at least ten times before the beginning of the actual measurement. Therefore it may be quite justified in stating that the system is filled with pure vapour of the organic compound.

When sufficient quantities of vapour are collected over the mercury in the bulb C, after waiting for a while, about 15 minutes being found to be sufficient in addition to the time required for the collection of the vapour in the bulb C for the vapour to attain the temperature of the bath T_0 , the vapour is finally driven back through the preheating tube W, the capillary K and vertical tube V into the liquid placed in the bulb apparatus PQR, with the pressure brought about by the mercury flowing

260 T. Titani [Vol. 8,

from the bulbs A and B down to C. The time required for the mercury to pass the distance between two marks m_1 and m_2 is measured by a stop watch and this observed value is reduced to an ideal value by adding some corrections which will be discussed below. The temperature T of the electrically heated thermostat, in which the capillary is placed, is regulated and is read every three minutes during the run and the average of these readings is adopted after being corrected for the exposed column, which is greatly diminished with the devices mentioned before.

The whole apparatus is carefully cleaned before each experiment with nitric acid and chromic mixture. It is then thoroughly washed with distilled water, alcohol and benzene and finally dried by passing dry air through the whole system alternatively in opposite directions. It will also be noted here, that when the experiment is interrupted the liquid in the bulb apparatus PQR must be drawn up into the one bulb R until the lower end of the vertical tube V becomes clear off the surface of the liquid. Otherwise, the liquid gets easily up into the measuring apparatus in the liquid form, thereby giving rise to a trouble, when the total system is cooled down.

Results of Experiments.

The viscosity η of the vapour at the absolute temperature T can be computed by means of the following formula:

$$\eta = K \frac{t}{T} \quad \dots \quad (1),$$

where t is the time required for the mercury to travel a distance between the marks m_1 and m_2 , T the temperature of the capillary measured in the absolute scale and K a constant for a given apparatus. But as this formula is derived by supposing ideal conditions, some corrections have to be applied in the actual case either to the time t or the constant K. The present author has applied them to the observed value of t. The corrections to be made are as follows:

(1) The correction due to the fluctuation of the temperature T_0 of the bulb C from the mean value (108.0+273.1° abs.):

$$\Delta_1 = \pm \Delta T_0 / T_0 = \pm 0.26 \% / \pm 1$$
°C.

(2) The correction due to the fluctuation of the barometer readings from the mean value 760 mm. was experimentally determined and found to be:

$$\Delta_2 = \pm 0.012\% / \pm 1 \text{ mm}.$$

(3) The correction due to the thermal expansion of the glass capillary tube when its temperature T is different from the standard temperature $(115.0+273.1^{\circ} \text{ abs.})$:

$$\Delta_3 = 3\alpha(T - 388.1) = \pm 0.0025\% / \pm 1^{\circ}C.$$

where α is a linear expansion coefficient of glass.

(4) The correction due to the kinetic energy of the vapour in the capillary tube has been calculated from the consideration that the amount of the energy lost due to the molecular friction of the vapour in the capillary being equal to the total energy of the vapour entering the capillary minus the amount of the kinetic energy possessed by the vapour at the outlet of the capillary tube, and it has been found to be:

$$\Delta_4 = \frac{1}{K} \frac{V}{8\pi l.R.T} \cdot \frac{T.M}{t^2} = 0.00557 \frac{T.M}{t^2} \dots (2)$$

where V is the total volume of the vapour transpired during the time t, l the length of the capillary, R the gas constant, M the molecular weight and T the temperature of the vapour.

(5) The correction due to the deviation from the ideal gas state of the organic vapour employed (5):

$$\Delta_{5} = \frac{1}{RT_{0}} \left(\frac{a}{RT_{0}} - b \right) \frac{a}{760} - \frac{2}{3RT} \left(\frac{a}{RT} - b \right) \frac{\beta}{760} \dots (3),$$

where a and b are constants in the van der Waals equation, T the temperature of the capillary, T_0 that of the bulb C, α and β being constants for a given apparatus. For the present apparatus they have been found to be: $\alpha = 880$, $\beta = 1210$.

These corrections were made to the directly observed values of the time of passage t, and the reduced values of t thus obtained were put in the formula (1) to compute the viscosity η . The constant K in eq. (1) was determined experimentally by using air as a standard substance which has given 1023 sec. at 115.0°C. to the value for reduced t. At this temperature the viscosity of air $^{(6)}$ is known to be $\eta = 2234 \times 10^{-7}$. Therefore

$$K = \frac{\eta \times T}{t} = \frac{2234 \times 10^{-7} \times (115.0 + 273.1)}{1023} = 0.8453 \times 10^{-4}.$$

⁽⁵⁾ The derivation of this equation is referred to the original paper of M. Trautz and W. Weizel, loc. cit.

⁽⁶⁾ T. Titani, loc. cit.

At the same time the apparatus has been tested by making measurements at several temperatures between 115.0° and 278.9°C. using air as a specimen. And from these data together with those obtained in the preceding paper (loc cit.) for Sutherland's constant 107 and for Reinganum's constant 84 were obtained. Then the measurements were continued for the other organic compounds.

The specimen used were all obtained from reliable commercial sources and carefully purified in the ordinary way. Their purity were checked by measuring the normal boiling points: n-pentane, $33.5^{\circ}\pm3.2$; n-hexane, $69.0^{\circ}\pm0.3$; hexamethylene, $80.9^{\circ}\pm0.3$; benzene, $80.1^{\circ}\pm0.0$; methyl acetate, $57.0^{\circ}\pm0.2$; ethyl acetate, $77.1^{\circ}\pm0.1$; ethyl ether, $34.55^{\circ}\pm0.05$; methyl alcohol, $64.65^{\circ}\pm0.05$; ethyl alcohol, $78.3^{\circ}\pm0.0$; n-propyl alcohol, $97.1^{\circ}\pm0.1$; isopropyl alcohol, $82.25^{\circ}\pm0.05$; acetone, $56.05^{\circ}\pm0.05$; chloroform, $61.05^{\circ}\pm0.05$; carbon tetrachloride, $76.7^{\circ}\pm0.0$; carbon disulphide, $46.2^{\circ}\pm0.0$.

The results of the measurements for benzene and carbon tetrachloride vapour are shown in Tables 1 and 2 as examples.

Table 1. Benzene.

// 070 1	t	c	Corrections %			107
T-273.1	observed	$\Delta_1 + \Delta_2 + \Delta_3$	Δ_4	Δ_5	reduced	η.10 ⁷
131.2° 161.3 194.6 221.9 252.5 279.9 312.8	494.3 569.6 660.6 737.8 828.6 909.6 1017.4	+0.07 $+0.19$ $+0.23$ $+0.19$ $+0.39$ $+0.46$ $+0.54$	-0.07 -0.05 -0.04 -0.04 -0.03 -0.03 -0.02	+0.36 +0.57 +0.75 +0.89 +1.00 +1.09 +1.18	496.1 573.6 666.8 745.5 839.9 923.4 1034.7	1031 1110 1198 1266 1343 1404 1484

Table 2.
Carbon tetrachloride.

// 079.1	t	C	orrections %	ó	t	n .107
T-273.1	observed	$\Delta_1 + \Delta_2 + \Delta_3$	Δ_4	Δ_5	reduced	η.10
127.9° 169.3 200.2 237.2 282.2 314.9	630.2 759.7 865.1 993.9 1168.1 1299.0	$\begin{array}{c} -0.02 \\ +0.08 \\ +0.17 \\ +0.30 \\ +0.39 \\ +0.50 \end{array}$	$\begin{array}{c} -0.09 \\ -0.07 \\ -0.06 \\ -0.05 \\ -0.04 \\ -0.03 \end{array}$	$egin{array}{l} +0.35 \\ +0.65 \\ +0.83 \\ +0.99 \\ +1.17 \\ +1.24 \end{array}$	631.7 764.7 873.2 1006 2 1185.9 1321.2	1334 1463 1562 1669 1808 1902

The results of the experiments are tabulated below, together with the calculated value of viscosity either with the Sutherland's or with Reinganum's formula:

$$\eta = K \frac{\sqrt{T}}{1 + \frac{C}{T}}$$
 (Sutherland) (4),

$$\eta = K' \frac{\sqrt{T}}{e^{\frac{C'}{T}}}$$
 (Reinganum) (5).

The constants K, C in eq. (4) and K', C' in eq. (5) were computed by means of the method of least square from the observed data of viscosity. The agreement with the observed values is found to be equally good in both cases.

Table 3. Air. (Free from carbon dioxide and moisture). $K = 144.4 \times 10^{-7}$, C = 106.8; $K' = 140.8 \times 10^{-7}$, C' = 84.3

Temperature	$\eta imes 10^7$			
Centigrade	Observed	Calculated (Sutherland)	Calculated (Reinganum)	
20.0°(7)	1809	1812	1809	
40.0	1897	1906	1904	
60.0	2007	1999	1996	
80.0	2079	2084	2085	
100.0	2169	2169	2171	
115.0	2234	2231	2233	
133.0	2302	2305	2306	
135.1	. 2315	2313	2315	
175.2	2480	2470	2471	
227.1	2665	2662	2662	
278.9	2835	2843	2841	

⁽⁷⁾ The data between 20.0° and 100.0° C. were taken from the preceding paper. (T. Titani, loc. cit.).

Table 4.

Normal pentane.

 $K = 90.30 \times 10^{-7}$, C = 382.8; $K' = 78.32 \times 10^{-7}$, C' = 212.4

Temperature	$\eta imes 10^7$			
Centigrade	Observed	Calculated (Sutherland)	Calculated (Reinganum)	
121.6° 158.9 189.6	911 995 1064	911 995 1063	909 996 1065	
219.1 249.5 277.1	1126 1191 1250	1127 1192 1249	1129 1193 1249	
305.9	1307	1308	1306	

Table 5.

Normal hexane.

 $K = 92.16 \times 10^{-7}$, C = 436.1; $K' = 77.83 \times 10^{-7}$, C' = 228.3

Temperature	$\eta imes 10^7$			
Centigrade	Observed	Calculated (Sutherland)	Calculated (Reinganum)	
120.7° 160.8 188.9	866 958 1021	868 957 1019	865 958 1021	
220.1 248.0 280.4	1088 1144 1213	1086 1145 1213	1088 1147 1212	
306.6	1265	1266	1264	

Table 6.

Hexamethylene (Cyclohexane).

 $\cdot K = 86.95 \times 10^{-7}, C = 350.9; K' = 76.56 \times 10^{-7}, C' = 201.6$

Temperature	$\eta imes 10^7$			
Centigrade	Observed	Calculated (Sutherland)	Calculated (Reinganum)	
121.7° 154.0 188.3	913 987 1064	915 987 1061	913 987 1063	
218.1 248.9 278.5	1124 1189 1245	1124 1188 1248	1126 1189 1248	
306.4	1305	1304	1302	

Table 7.
Benzene.

$$K = 108.2 \times 10^{-7}$$
, $C = 447.5$; $K' = 90.81 \times 10^{-7}$, $C' = 231.2$

Temperature	$\eta imes 10^7$		
Centigrade	Observed	Calculated (Sutherland)	Calculated (Reinganum)
131.2° 161.3 194.6	1031 1110 1198	1033 1111 1196	1031 1112 1198
221.9 252.5 279.9	1266 1343 1404	1265 1340 1407	1267 1341 1406
312.8	1484	1485	1482

Table 8.

Methyl acetate.

$$K = 122.9 \times 10^{-7}$$
, $C = 501.8$; $K' = 100.4 \times 10^{-7}$, $C' = 245.9$

Temperature	$\eta imes 10^7$			
Centigrade	Observed	Calculated (Sutherland)	Calculated (Reinganum)	
143.3°	1139	1137	1136	
177.7	1236	1235	1236	
218.5	1348	1348	1351	
248.2	1429	1429	1431	
277.9	1508	1509	1509	
306.6	1583	1586	1582	

Table 9. Ethyl acetate.

$$K = 114.7 \times 10^{-7}, C = 504.0; K' = 93.58 \times 10^{-7}, C' = 246.1$$

Temperature	$\eta imes 10^7$			
Centigrade	Observed	Carculated (Sutherland)	Calculated (Reinganum)	
128.1°	1018	1018	1015	
158.6	1698	1099	1100	
192.9	1195	1189	1192	
218.3	1250	1255	1257	
248.6	1332	1332	1334	
280.1	1409	1411	1411	
313.7	1497	1495	1491	

Table 10.

Ethyl ether.

 $K = 100.3 \times 10^{-7}$, C = 404.0; $K' = 86.36 \times 10^{-7}$, C' = 220.5

Temperature	$\eta imes 10^7$				
Centigrade	Observed	Calculated (Sutherland)	('alculated (Reinganum)		
121.8°	983	985	982		
159.4	1079	1079	1079		
189.9	1152	1153	1154		
217.7	1222	1219	1221		
251.0	1300	1297	1298		
277.8	1358	1358	1359		
308.9	1425	1428	1427		

Table 11.

Methyl alcohol.

 $K = 145.7 \times 10^{-7}$, C = 486.9; $K' = 119.0 \times 10^{-7}$, C' = 237.8

Temperature	$\eta imes 10^7$			
Centigrade	Observed	Calculated (Sutherland)	Calculated (Reinganum)	
111.3° 153.9 188.8	1259 1408 1527	1260 1407 1525	1257 1409 1529	
217.5 250.0 277.6	1620 1725 1815	1620 1726 1815	1624 1728 1813	
311.5	1921	1922	1916	

Table 12.

Ethyl alcohol.

 $K = 117.6 \times 10^{-7}$, C = 407.3; $K' = 101.2 \times 10^{-7}$, C' = 222.3

Temperature	$\eta imes 10^7$				
Centigrade	Observed	Calculated (Sutherland)	Calculated (Reinganum)		
130.2°	1173	1175	1170		
170.7	1293	1292	1293		
191.8	1355	1352	1353		
217.5	1421	1423	1426		
251.7	1519	1517	1520		
278.2	1585	1588	1588		
308.7	1670	1669	1667		

Table 13.

Normal propyl alcohol.

 $K = 119.1 \times 10^{-7}$, C = 515.6; $K' = 95.50 \times 10^{-7}$, C' = 243.5

$\eta imes 10^7$			
Observed	Calculated (Sutherland)	Calculated (Reinganum)	
1025	1026	1024	
1102	1102	1102	
1186	1185	1187	
1267	1266	1267	
1350	1354	1354	
1434	1432	1429	
	1025 1102 1186 1267 1350	Observed Calculated (Sutherland) 1025 1026 1102 1102 1186 1185 1267 1266 1350 1354	

Table 14.

Iso-propyl alcohol.

$$K = 113.2 \times 10^{-7}, C = 459.9; K' = 94.13 \times 10^{-7}, C' = 233.0$$

Temperature	$\eta imes 10^7$			
Centigrade	Observed	Calculated (Sutherland)	Calculated (Reinganum)	
119.2°	1028	1032	1030	
121.3	1034	1038	1036	
138.4	1084	1085	1084	
149.2	1112	1114	1114	
169.4	1169	1168	1170	
190.7	1231	1224	1227	
192.9	1237	1230	1233	
198.4	1248	1245	1247	
218.3	1299	1297	1299	
235.1	1340	1340	1342	
251.1	1382	1381	1382	
279.2	1450	1452	1451	
293.1	1488	1487	1484	
307.9	1517	1523	1519	

Table 15.

Acetone.

$$K = 119.2 \times 10^{-7}$$
, $C = 541.5$; $K' = 95.45 \times 10^{-7}$, $C' = 254.7$

Temperature	$\eta imes 10^7$			
Centigrade	Observed	Calculated (Sutherland)	Calculated (Reinganum)	
119.0° 159.5 190.4	991 1101 1186	992 1101 1184	987 1102 1186	
217.3 247.7 278.8	1253 1334 1416	1255 1334 1414	1258 1336 1414	
306.4	1481	1484	1481	

Table 16.

Chloroform.

$$K = 132.9 \times 10^{-7}, C = 373.0; K' = 115.4 \times 10^{-7}, C' = 207.6$$

Temperature	$\eta imes 10^7$			
Centigrade	Observed	Calculated (Sutherland)	Calculated (Reinganum)	
121.3° 161.3 189.1	1357 1491 1579	1356 1490 1581	1354 1492 1584	
218.7 250.0 279.4	1674 1776 1868	1676 1774 1865	1678 1775 1863	
307.5	1947	1950	1945	

Table 17.

Carbon tetrachloride.

$$K = 127.1 \times 10^{-7}$$
, $C = 365.4$; $K' = 110.9 \times 10^{-7}$, $C' = 205.6$

Temperature		$\eta imes 10^7$			
Centigrade	Observed	Calculated (Sutherland)	Calculated (Reinganum)		
127.9°	1334	1332	1331		
169.3	1463	1464	1466		
200.2	1562	1561	1563		
237.2	1669	1673	1675		
282.2	1808	1807	1805		
314.9	1902	1901	1896		

Table 18. Carbon disulphide.

$$K = 151.1 \times 10^{-7}$$
, $C = 499.5$; $K' = 122.7 \times 10^{-7}$, $C' = 241.3$

Temperature		$\eta imes 10^7$		
Centigrade	Observed	Calculated (Sutherland)	Calculated (Reinganum)	
114.3°	1303	1299	1296	
152.8	1434	1436	1438	
190.2	1561	1565	1570	
228.2	1692	1695	1698	
267.3	1830	1826	1826	
309.8	1966	1965	1959	

Some results of the present author are compared with those of the other observers. The values of viscosity observed by the author at 100° C. are listed together with those of the other observers in Table 19.

Table 19. Viscosity at 100° C. $\times 10^{-7}$.

Substance	Author's	Other observers'
Normal pentane	859	841 (Bleakney 1932)(8)
Normal hexane	818	
Hexamethylene	864	880 (Nasini 1929)(9) (1176 (Schumann 1884)(10)
Benzene	947	930 (Rappenecker 1910)(11) 940 (Nasini 1929)
Methyl acetate Ethyl acetate	1008 939	1015 (Rappenecker 1910) 955 (,,)
Ethyl ether	927	942 (Pedersen 1907) ⁽¹²⁾ 967 (Rappenecker 1910)
Methyl alcohol	1218	(con (mpp
Ethyl alcohol	1082	{ 1088 (Pedersen 1907) { 1090 (Rappenecker 1910)
Normal propyl alcohol Iso-propyl alcohol	964 977	
Acetone	936	943 (Rappenecker 1910)

⁽⁸⁾ Bleakney, Physics, 3 (1932), 123.

⁽⁹⁾ Nasini, Proc. Roy. Soc. London, A123 (1929), 692.

⁽¹⁰⁾ Schumann, Wied. Ann., 23 (1884), 353.

⁽¹¹⁾ Rappenecker, Z. physik. Chem., 72 (1910), 695.

⁽¹²⁾ Pedersen, Phys. Rev., 25 (1907), 225.

Table 19.—(Concluded)

Substance	Author's	Other observers'
Chloroform Carbon tetrachloride Carbon disulphide	1281 1238 1245	{ 1307 (Rappenecker 1910) { 1244 (Braune & Linke 1930)(13) { 1164 (1203 (Sperry & Mack 1932)(14) 1218 (Bleakney 1932)

The agreement between the values of the author and those of the other observers is generally good except few cases.

The Sutherland's and Reinganum's constants obtained by the author are listed in Tables 20 and 21 respectively, together with those reported by the other observers. Large differences between the values of the author and those of the other observers are often found. But it must be taken

Table 20.
Sutherland's constants.

Substance	Author's	Other observers'(15)
Normal pentane	383	299 (Bleakney 1932)
Normal hexane	436	
Hexamethylene	351	330 (Nasini 1929)
Benzene	448	700 (Rappenecker 1910) 380 (Nasini 1929)
Methyl acetate	502	660 (Rappenecker 1910)
Ethyl acetate	504	650 (,,)
Ethyl ether	404	325 (,,)
Methyl alcohol	487	
Ethyl alcohol	407	525 (Rappenecker 1910)
Normal propyl alcohol	516	
Iso-propyl alcohol	460	
Acetone	542	670 (Rappenecker 1910)
Chloroform	373	{ 292 (,,) } (462 (Braune & Linke 1930)
Carbon tetrachloride	365	492 (,,) 335 (Sperry & Mack 1932)
Carbon disulphide	500	(000 (Speriy & Mack 1002)

⁽¹³⁾ Braune and Linke, Z. physik. Chem., A148 (1930), 195.

⁽¹⁴⁾ Sperry and Mack, J. Am. Chem. Soc., 54 (1932), 904.

⁽¹⁵⁾ loc. cit.

Table	21.
Reinganum's	constants.

Substance	Author's	Other observers'(16)
Normal pentane	212	
Normal hexane	228	
Hexamethylene	202	
Benzene	231	260 (Rappenecker 1910)
Methyl acetate	246	258 (,,)
Ethyl acetate	246	260 (,,)
Ethyl ether	221	180 (,,)
Methyl alcohol	238	
Ethyl alcohol	222	210 (Rappenecker 1910)
Normal propyl alcohol	244	
so-propyl alcohol	233	·
Acetone	255	251 (Rappenecker 1910)
Chloroform	208	173 (,,)
Carbon tetrachloride	206	
Carbon disulphide	241	

into consideration that in determining the values for Sutherland's and Reinganum's constants, the method based on the data at few successive temperatures, as was done by Rappenecker, would be more liable to lead to great errors than the method in which a greater number of observations are made.

J. Arnold⁽¹⁷⁾ has recently pointed out that the Sutherland's constants can be calculated from the viscosity determination at a single temperature T by the use of the molecular diameter calculated from the molecular volume V_S at boiling point, according to the formula:

$$C^* = 2.70 \times 10^{-5} \left(M^{\frac{1}{2}} T^{\frac{3}{2}} / \eta V_S^{\frac{2}{3}} \right) - T \dots (6),$$

where M means molecular weight. The values of C^* calculated from the viscosity data at 100° C. are listed in Table 22 together with the values of C computed by the ordinary method. The agreement between C and C^* is generally good, average deviation being 5%, except few cases i.e. hexamethylene, methyl alcohol, chloroform and carbon tetrachloride.

⁽¹⁶⁾ Rappenecker, loc. cit.

⁽¹⁷⁾ J. H. Arnold, J. Chem. Phys., 1 (1933) 170.

Table 22 contains also the values of Sutherland's constants calculated according to the rules of Rankine⁽¹⁸⁾ and Vogel⁽¹⁹⁾, the Sutherland's constant being found to be roughly proportional either to the critical temperature T_K or to the boiling point T_S , both of which are measured in the absolute scale;

Table 22.
Sutherland's constants.

Substance	C	C*	$T_K/1.12$	$1.47~T_S$
Normal pentane	383	427	420	454
Normal hexane	436	446	454	503
Hexamethylene	351	494	494	521
Benzene	448	492	501	519
Methyl acetate	502	494	453	485
Ethyl acetate	504	495	467	515
Ethyl ether	404	432	417	453
Methyl alcohol	487	366	458	497
Ethyl alcohol	407	405	461	516
Normal propyl alcohol	516	459	479	549
Iso-propyl alcohol	460	452	461	522
Acetone	542	501	454	484
Chloroform	373	489	479	491
Carbon tetrachloride	365	510	496	515
Carbon disulphide	500	496	494	469

The agreement with the observed values seems to be better for the Rankine's formula than for that of Vogel.

Collision Diameter.

The collision diameters of the molecules were computed by using the following equations all of which are derived from the kinetic theory of gases⁽²⁰⁾:

⁽¹⁸⁾ Rankine, Proc. Roy. Soc. London, A 84 (1910), 181.

⁽¹⁹⁾ Vogel, Ann. Phys., 43 (1914), 1235.

⁽²⁰⁾ Kuenen, "Die Eigenschaften der Gase", (1919), p. 136.

where

or

$$\bar{u}^2 = \frac{8}{\pi} \frac{p}{d} = \frac{8}{\pi} \times 1013250 \times \frac{30619}{M} \qquad (9),$$

$$l = \frac{32\eta}{5\pi d\bar{u}} = \frac{\eta \times 30619}{0.49 \times M \times \bar{u}} \qquad (10),$$

$$\sigma^2 = \frac{1}{\sqrt{2 n\pi l F(T)}}, \quad (n = 2.0 \times 10^{19}) \qquad (11),$$

$$F(T) = 1 + \frac{C}{T} \quad \text{(Sutherland)} \qquad (12),$$

$$F(T) = e^{\frac{C'}{T}} \qquad \text{(Reinganum)} \qquad (13),$$

and the symbols in the equations have the following meanings:

 \bar{u} : mean velocity of the molecule at 100°C.,

p: atmospheric pressure,

d: density of the vapour at 100°C, and under the atmospheric pressure,

M: molecular weight,

l: mean free path of the molecule at 100°C. and under the atmospheric pressure,

n: viscosity of the vapour at 100°C.,

 σ : collision diameter of the molecule,

n: number of molecules contained in 1 c.c. at 100°C. and under the atmospheric pressure.

The results of the calculation are listed in Tables 23 and 24, where σ_S means the molecular diameter calculated by the use of the Sutherland's formula (12) and σ_R that of Reinganum (13). The molecular diameter can also be computed from the constant b in the van der Waals equation (21) namely:

where N_A means the Avogadro's constant. The values σ_b are given in the forth column of Table 24, and it will be seen in most cases that σ_b is nearly equal to σ_S . The last column of Table 24 contains the cube root of the molecular volume V_S at boiling point, which may be proportional to σ_S , as it was already pointed out in the preceding paper (22). It

^{(21), (22)} T. Titani, loc. cit.

Table 23.

Substance	М	\bar{u} .	$\eta \cdot 10^7$	l · 108	C	C'
Normal pentane	72.10	33100	859	225	383	212
Normal hexane	86.11	30290	818	196	436	228
Hexamethylene	84.10	30650	864	210	351	202
Benzene	78.05	31820	947	238	448	231
Methyl acetate	74.05	32660	1008	260	502	246
Ethyl acetate	88.06	29950	939	223	504	246
Ethyl ether	74.08	32660	927	239	404	221
Methyl alcohol	32.03	49660	1218	478	487	238
Ethyl alcohol	46.05	41420	1082	355	407	222
Normal propyl alcohol	60.06	36270	964	277	516	244
Iso-propyl alcohol	60.06	36270	977	280	460	233
Acetone	58.05	36890	936	273	542	255
Chloroform	119.39	25720	1281	261	373	208
Carbon tetrachloride	153.84	22660	1238	222	365	206
Carbon disulphide	76.12	32220	1245	317	500	241

Table 24.

Substance	$\sigma_S imes 10^8$ (Sutherland)	$\sigma_R imes 10^8$ (Reinganum)	$\sigma_b \times 10^8$ (From b)	Cube root of Mol. Vol. at B.P. $\sqrt[3]{V_S}$
Normal pentane	5.00	5.35	4.86	4.90
Normal hexane	5.18	5.61	5.18	5.19
Hexamethylene	5.19	5.63	4.83	4.88
Benzene	4.66	5.07	4.56	4.58
Methyl acetate	4.32	4.76	4.46	4.38
Ethyl acetate	4.67	5.15	4.81	4.73
Ethyl ether	4.78	5.13	4.73	4.74
Methyl alcohol	3.21	3.55	3.75	3.50
Ethyl alcohol	3.92	4.21	4.05	3.96
Normal propyl alcohol	4.16	4.63	4.42	4.34
Iso-propyl alcohol	4.27	4.66	4.26	4.33
Acetone	4.12	4.59	4.19	4.26
Chloroform	4.67	5.01	4.32	4.39
Carbon tetrachloride	5.09	5.44	4.64	4.70
Carbon disulphide	3.92	4.34	3.93	3.96

is actually the case for most compounds listed in Table 24 except few cases. The compounds whose molecules are of extremely non-polar nature, such as hexamethylene, chloroform and carbon tetrachloride seem to give σ_S too large a value as compared with σ_b or $i^3 V_S \cdot 10^{-8}$. However, for the compounds of strong polar nature such as methyl alcohol the reverse is the case. These differences must result either from the function F(T) in eq. (11) or more directly from the Sutherland's constant C in F(T), which measures the work required to separate two molecules from each other against the intermolecular attraction.

The collision diameter of benzene seems to be interesting in relation to its magnitude. It has become clear not only from the X-ray crystallographical study but also from the thermochemical investigations that the benzene nucleus is the same as the hexagonal carbon atom lattice in graphite, the length of the one side of this hexagonal model being found to be 2.45 Å. Therefore, its diameter is equal to $2\times2.45=4.9$ Å, when we assume the model to have a regular form. This value is very nearly equal to the collision diameter of benzene, $\sigma=4.7-5.1$ Å deduced from the viscosity measurement in the present research.

The experimental part of the present research was carried out between April 1929 and April 1930 in the Katayama Laboratory of the Institute of Physical and Chemical Research, Hongo, Tokio. The delay of the publication is mainly due to the trip which the author made in Europe.

The author wishes to express his cordial thanks to Prof. Katayama for his interest and encouragement taken in this research.

Summary.

- (1) An apparatus, based on the principle of Trautz and Weizel, was constructed for measuring the viscosity of vapours.
- (2) With this apparatus the viscosity of vapours of the following substances were measured at temperatures between about 120° and 300°C.: air, *n*-pentane, *n*-hexane, hexamethylene, benzene, methyl acetate, ethyl acetate, ethyl ether, methyl alcohol, ethyl alcohol, *n*-propyl alcohol, iso-propyl alcohol, acetone, chloroform, carbon tetrachloride and carbon disulphide.
- (3) From these measurements the constants of both Sutherland and Reinganum as well as collision diameters of molecules were calculated.
- (4) The collision diameters calculated from viscosity data were found to be nearly equal to those computed from the constants b in the

276 [Vol. 8,

van der Waals equation and they came out to be proportional to the cube roots of molecular volumes at boiling points, as was already pointed out in the preceding paper except few cases.

(5) Values obtained for collision diameters of non-polar compounds such as carbon tetrachloride and hexamethylene seem to be too large and those for strong polar compounds such as methyl alcohol too small as compared with the values of molecular diameters computed from b or from the molecular volumes at boiling points.

Chemical Laboratory of the	Osaka
Imperial University,	
Nakanoshima, Osaka.	

June, 1933.